
©Wen-mei W. Hwu and David Kirk/NVIDIA        
Berkeley, January 24-25, 2011

Berkeley Winter School

Advanced Algorithmic Techniques for GPUs

Lecture 4: Thread Coarsening 
and more on Tiling/Blocking
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Thread Coarsening

• Parallel execution sometime requires doing 
redundant memory accesses and/or calculations
– Merging multiple threads into one allows re-use of 

result, avoiding redundant work
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Outline of Technique

• Merge multiple threads so each resulting thread 
calculates multiple output elements
– Perform the redundant work once and save result into 

registers
– Use register result for calculating all output elements

• Merged kernel code will use more registers
– May reduce the number of threads allowed on an SM
– Increased efficiency may outweigh reduced 

parallelism, especially if ample for given hardware
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Register Tiling

• Registers 
– extremely fast (short latency)
– do not require memory access instructions (high 

throughput)
– But – private to each thread
– Threads cannot share computation results or loaded 

memory data through registers

• With thread coarsening
– The computation from merged threads can now share 

registers
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• Add each atom’s contribution to several lattice 
points at a time, where distances only differ in 
one (x) component:
potentialA +=  charge[i] / (distanceA to atom[i]) 
potentialB +=  charge[i] / (distanceB to atom[i])
…

DCS Kernel with Register Tiling

Atom[i]

Distances to 
Atom[i]
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DCS Coarsened Kernel Structure

• Example kernel processes up to 4 lattice points 
at a time in the inner loop

• Subsequent lattice points computed by each 
thread are offset by a half-warp to guarantee 
coalesced memory accesses

• Loads and increments 4 potential map lattice 
points from global memory at completion of the 
summation, mitigating register consumption
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Coarsened Kernel Inner Loop 
Outline

for (atomid=0; atomid<numatoms; atomid++) {
float dy = coory - atominfo[atomid].y;
float dysqpdzsq = (dy * dy) + atominfo[atomid].z;
float dx1 = coorx1 - atominfo[atomid].x;
float dx2 = coorx2 - atominfo[atomid].x;
float dx3 = coorx3 - atominfo[atomid].x;
float dx4 = coorx4 - atominfo[atomid].x;
energyvalx1 += atominfo[atomid].w * (1.0f / sqrtf(dx1*dx1 + dysqpdzsq));
energyvalx2 += atominfo[atomid].w * (1.0f / sqrtf(dx2*dx2 + dysqpdzsq));
energyvalx3 += atominfo[atomid].w * (1.0f / sqrtf(dx3*dx3 + dysqpdzsq));
energyvalx4 += atominfo[atomid].w * (1.0f / sqrtf(dx4*dx4 + dysqpdzsq));

}
…
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More Comments on Coarsened Kernel

• Pros:
– We can reduce the number of loads by reusing atom coordinate 

values for multiple voxels, by storing in regs
– By merging multiple points into each thread, we can compute 

dy^2+dz^2 once and use it multiple times, much like the fast CPU 
version of the code

– A good balance between efficiency, locality and parallelism

• Cons:
– Uses more registers, one of several limited resources
– Increases effective tile size, or decreases thread count in a block, 

though not a problem at this level
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Basic DCS Kernel

• Each thread calculates value for one grid point
• A small toy example. ASSUME

– Each thread block consists of 8 threads
– Each warp consists of 4 threads, 16-byte coalescing
– a 10X5 potential grid map
– Padding - 2 points in x dim and 1 point in y dim

• No boundary tests
• Coalescing

– 44% overhead
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DCS Memory Coalescing
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Coarsened DCS Kernel

• Merge threads to calculate more than one lattice 
point per thread, resulting in larger computational 
tiles:
– Thread count per block may need to be be decreased 

to reduce computational tile size as per thread work is 
increased

– Otherwise, tile size gets bigger as threads do more 
than one lattice point evaluation, resulting on a 
significant increase in padding and wasted 
computations at edges
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Simple Thread Coarsening

• Each thread processes two grid points
– Increased padding overhead (92%)
– Classic quantization effect 

• Can be mitigated by reducing the number of 
threads in each block, X-dim in particular
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A Simple Quiz

• Assume 
– 1000X1000 energy grid
– 16X16 thread block
– 64-byte coalesing units

• What is the padding overhead if each thread 
processes one grid point?

• What is the padding overhead if each thread 
processes four grid points?
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DCS CUDA Block/Grid Decomposition 
(Coarsened, coalesced)

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…

Thread blocks: 
64-256 threads

…

Coarsening increases 
computational tile size

Threads compute
up to 8 potentials, 

skipping by half-warps
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STENCIL CODE EXAMPLE
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Stencil Computation

• Describes the class of nearest neighbor 
computations on structured grids.

• Each point in the grid is a weighted linear 
combination of a subset of neighboring values.

• Optimizations and concepts covered : Improving 
locality and Data Reuse
– 2D Tiling in Shared Memory
– Coarsening and Register Tiling
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Stencil Computation

• High parallelism: Conceptually, all points in the 
grid can be updated in parallel.

• Each computation performs a global sweep 
through the data structure.

• Low computational intensity: High memory traffic 
for very few computations.

• Base case: one thread calculates one point
• Challenge: Exploit parallelism without overusing 

memory bandwidth

©Wen-mei W. Hwu and David Kirk/NVIDIA        
Berkeley, January 24-25, 2011

17



Memory Access Details

• General Equation:

• Separate read and write arrays.
• Mapping of arrays from 3D space to linear array 

space.
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Coarsened implementation

• Each thread calculates a one-element thin 
column along the z-dimension
– Each block computes a rectangular column along the 

z-dimension
• Each thread loads its input elements from global 

memory, independently of other threads
– High read redundancy, heavy global memory traffic

• Optimization – each thread can reuse data along 
the z-dimension
– The current center input becomes the bottom input
– The current top input becomes the center input
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Coarsened Kernel in Z-dimension
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int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;

float bottom =  AO[ Index3D(nx, ny, i, j, 0)];
float current =  AO[ Index3D(nx, ny, i, j, 1)];
float top = AO[ Index3D(nx, ny, i, j, 2)];

for (int k = 1; k < nz-1; k++) {
Anext[Index3D(nx, ny, i, j, k) =  top + bottom + 

AO[ Index3D(nx, ny, i-1, j, k)] +
AO[ Index3D(nx, ny, i+1, j, k)] +
AO[ Index3D(nx, ny, i, j-1, k)] +
AO[ Index3D(nx, ny, i, j+1, k)] +
6.0f * current/ (fac*fac);

bottom = current; current = top; top = AO[ Index(nx, ny, i, j, k+2);  
}



Loads in the Coarsened Kernel 

• Assume no data reuse along the z-direction 
within each thread, 
– A thread loads 7 input elements for each output 

element.
• With data reuse within each thread,

– A thread loads 5 input elements for each output

• All loads by neighboring threads are to 
continuous addresses
– Coalecsed if alignment requirement is relaxed
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Cross-Thread Data Reuse

• Each internal point is 
used to calculate 
seven output values
– self, 4 planar 

neighbors, top and 
bottom neighbors

• Surface, edge, and 
corner points are used 
for fewer output 
values
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Improving Locality: 2D Tiling

• Assume that all threads of a block march up the 
z-direction in synchronized phases

• In each phase, all threads calculate a 2-D slide of 
the rectangular output column

• For each phase, maintain three slices of relevant 
input data in the on-chip memories
– One top and one bottom element in each thread’s 

private registers
– All current elements also in shared memory
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Improving Locality: 2D Tiling (cont.)

• From one phase to next, the kernel code
– Moves current element to register for lower element
– Moves top element from top register to current register 

and shared memory
– Load new top element from Global Memory to register

• Need to deal with halo data
– Needed to calculate edge elements

of the column
– For each 3D  nxmxp output block to 

be computed, we need to load
(n+2)x(m+2)x(p+2) inputs.. 
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Load x-Halo into Shared Memory
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__shared__ float As[TILE_WIDTH+1][TILE_WIDTH+1];
__shared__ float As[TILE_WIDTH+1][TILE_WIDTH+1];

float bottom = A0[index3D(nx, ny, i, j, 0)];
float current = A0[index3D(nx, ny, i, j, 1)]; 
float top = A0[index3D(nx, ny, i, j, 2)]; 

int i_tile = threadIdx.x + 1; 
int j_tile = threadIdx.y + 1; 
for (int k = 1; k < nz-1; k++) { 

As[i_tile][j_tile] = current; 
if(threadIdx.x == 0) 

As[i_tile - 1][j_tile] = A0[index3D(nx, ny, i-1, j, k)];
if(threadIdx.x == blockDim.x-1) 

As[i_tile + 1][j_tile] = A0[index3D(nx, ny, i+1, j, k)]; 

Not coalesced



Load y-Halo into Shared Memory

if(threadIdx.y == 0) 
As[i_tile][j_tile - 1] = A0[index3D(nx, ny, i, j-1, k)];

if(threadIdx.y == blockDim.y-1) 
As[i_tile][j_tile + 1] = A0[index3D(nx, ny, i, j+1,k)];

__syncthreads(); 
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Anext[Index3D(nx, ny, i, j, k) = top + bottom + 
As[i_tile-1][j_tile] + As[i_tile+1][j_tile] + 
As[i_tile][j_tile-1] + As[i_tile][j_tile+1] + 
6.0f * current/ (fac*fac); 

bottom = current; 
current = top; 
top = AO[ Index(nx, ny, i, j, k+1); 
__syncthreads(); }
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A Simpler Approach

• Have the TILE_WIDTH to be 2 more than the x 
and y dimension of the thread block dimensions

• In kernel, have extra instruction to 
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Loading halo elements can hurt.

• For small n and m, the halo overhead can be 
very significant
– If n=16 and m = 8, each slice calculates 16*8=128 

output elements in each slice and needs to load 
(16+2)*(8+2) =18*10=180 elements

– In coarsened code, each output element needs 5 
loads from global memory, a total of 5*128=640 loads

– The total ratio of improvement is 640/180 = 3.5, rather 
than 5 times

– The value of n and m are limited by the amount of 
registers and shared memory in each SM
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In Fermi

• It is often better not to load halo elements into 
shared memory.

• Rather, just put in a test and load the halo to 
from the global memory for the boundary 
elements

• The loads of horizontal halos are coalesced
• The loads of vertical halos tend to be in L2 cache 

(touched by neighbor trhead blocks)
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Accessing Halo from Global Memory
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__shared__ float As[TILE_WIDTH][TILE_WIDTH];
__shared__ float As[TILE_WIDTH][TILE_WIDTH];
float bottom =  AO[ Index3D(nx, ny, i, j, 0)];
float current =  AO[ Index3D(nx, ny, i, j, 1)];
float top = AO[ Index3D(nx, ny, i, j, 2)];
As[i][ j] = current;
for (int k = 1; k < nz-1; k++) {

__syncthreads();
Anext[Index3D(nx, ny, i, j, k) =  top + bottom + 

(i==0 ? AO[Index3D(nx,ny,i-1,j,k) :   As[i-1][j] ) +
(i==TILE_SIZE-1)? AO[Index3D(nx,ny,i+1,j,k), As[i+1][j]) + 
(j==0? AO[Index3D(nx,ny,i,j-1,k)]: As[i][j-1] ) + 
(j==TILE_SIZE-1)? AO[Index3D(nx,ny,i, j+1,k)] :As[i][j+1]+
6.0f * current/ (fac*fac);

bottom = current; current = top; top = AO[ Index(nx, ny, i, j, k+1);
__syncthreads();
As[i][j] = current;  }



More Thread Coarsening 

• We can further coarsen threads along the y-
dimension.

• Merge multiple threads that go up the z-
dimension together.
– Have all current elements of all merged threads in 

register – increased register pressure
– Access some of the neighbor elements from the 

registers rather than shared memory

©Wen-mei W. Hwu and David Kirk/NVIDIA        
Berkeley, January 24-25, 2011

32



Coarsened Kernel in YZ-dimensions
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int i = blockIdx.x * blockDim.x + threadIdx.x;
int j1 = blockIdx.y * blockDim.y + 2*threadIdx.y;
int j2 = blockIdx.y * blockDim.y + 2*threadIdx.y+1;

float bottom1 = AO[ Index3D(nx, ny, i, j1, 0)];
float bottom2 = AO[ Index3D(nx, ny, I, j2, 0)];

float current1 = AO[ Index3D(nx, ny, i, j1, 1)];
float current2 = AO[ Index3D(nx, ny, I, j2, 1)];

float top1 = AO[ Index3D(nx, ny, i, j1, 2)];
float top2 = AO[ Index3D(nx, ny, i, j2, 2)];
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Coarsened Kernel in YZ Dimensions 

for (int k = 1; k < nz-1; k++) {
Anext[Index3D(nx, ny, i, j1, k) =  top1 + bottom1 + 

AO[ Index3D(nx, ny, i-1, j1, k)] + AO[ Index3D(nx, ny, i+1, j1, k)] +

AO[ Index3D(nx, ny, i, j1-1, k)] +  current2 +
6.0f * current1/ (fac*fac);

Anext[Index3D(nx, ny, i, j2, k) =  top2 + bottom2 + 
AO[ Index3D(nx, ny, i-1, j2, k)] +  AO[ Index3D(nx, ny, i+1, j2, k)] +

current1 +  AO[ Index3D(nx, ny, i, j2+1, k)] +
6.0f * current2/ (fac*fac);

bottom1 = current1; current1 = top1; top1 = AO[ Index(nx, ny, i, j1, k+2);  

bottom2 = current2; current2 = top2; top2 = AO[ Index(nx, ny, i, j2, k+2);  

}
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ANY MORE QUESTIONS?
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